
neuray Rc Reference:
JavaScript Plugin

Document version 1.2
December 20, 2010

neuray

Copyright Information

c© 1986, 2011 NVIDIA Corporation. All rights reserved.

This document is protected under copyright law. The contents of this documentmay not be translated,
copied or duplicated in any form, in whole or in part, without the express written permission of
NVIDIA Corporation.

The information contained in this document is subject to change without notice. NVIDIA Corporation
and its employees shall not be responsible for incidental or consequential damages resulting from the
use of this material or liable for technical or editorial omissions made herein.

NVIDIA, the NVIDIA logo, and DiCE, imatter, iray, mental cloud, mental images, mental matter,
mental mesh, mental mill, mental queue, mental ray, Metanode, MetaSL, neuray, Phenomenon,
RealityDesigner, RealityPlayer, RealityServer, rendering imagination visible, ShapeByShading, and
SPM, are trademarks and/or registered trademarks of NVIDIA Corporation. Other product names
mentioned in this documentmay be trademarks or registered trademarks of their respective companies
and are hereby acknowledged.

neuray Reference: JavaScript Plugin, doc. 1.2 c© 1986, 2011 NVIDIA Corporation.

Table of Contents

Table of Contents

1 Overview . 1

2 Tutorials . 1

2.1 Echo . 1

2.1.1 What You Will Learn . 1

2.1.2 Introduction . 2

2.1.3 Step 1: Creation of MetaData . 2

2.1.4 Step 2: Creation of JavaScript . 3

2.1.5 Step 3: Testing of JavaScript . 3

2.2 Factorial . 4

2.2.1 What You Will Learn . 4

2.2.2 Introduction . 4

2.2.3 Step 1: Creation of MetaData . 4

2.2.4 Step 2: Creation of JavaScript Using JavaScript’s Recursion . 4

2.2.5 Step 3: Testing of JavaScript . 5

2.2.6 Step 4: Creation of JavaScript Using neuray Services Recursion . 5

2.3 Batching Service Commands . 7

2.3.1 What You Will Learn . 7

2.3.2 Introduction . 8

2.3.3 Step 1: Creation of MetaData . 8

2.3.4 Step 2: Creation of JavaScript . 8

2.3.5 Step 3: Testing of JavaScript . 9

3 Configuration . 9

4 API . 10

4.1 MetaData . 10

4.2 JavaScript API . 11

5 Runtime . 12

6 Release Notes . 12

c© 1986, 2011 NVIDIA Corporation. neuray Reference: JavaScript Plugin, doc. 1.2 i

Table of Contents

ii neuray Reference: JavaScript Plugin, doc. 1.2 c© 1986, 2011 NVIDIA Corporation.

2.1 Tutorials— Echo

1 Overview
The JavaScript plugin provides a means to script neuray Services [neuray Services API] through
JavaScript. This allows one to script neuray Services without the use of C++.

In particular the JavaScript plugin provides:

• The ability to register a service command that, when executed, runs associated JavaScript
contained in a file on disk

• The ability to call any other service commands from within a JavaScript service command
independent of the language in which the service command is written

Currently the plugin supports JavaScript version 1.8.0 as implemented in Spidermonkey version
“JavaScriptC 1.8.0 prerelease 1 20090216”.

This document contains the following:

• JavaScript plugin tutorials Describes how to use the JavaScript plugin to script neuray Services

• Configuration documentation Describes how to configure the JavaScript plugin

• API documentation Describes the JavaScript API presented by the JavaScript plugin

• Runtime documentation Describes how a registered JavaScript service command changes as
you modify or remove its associated JavaScript file.

• Release notes Describes this release of the JavaScript plugin

2 Tutorials

2.1 Echo

2.1.1 What You Will Learn

In this tutorial you will learn how to:

• Create “metadata”, data used to specify the interface presented by a JavaScript plugin

• Create JavaScript that executes as a service command

• Test a JavaScript based service command

c© 1986, 2011 NVIDIA Corporation. neuray Reference: JavaScript Plugin, doc. 1.2 1

2.1 Tutorials— Echo

2.1.2 Introduction

For your first JavaScript plugin you will create a simple JavaScript echo service command, similar to
the UNIX command line tool echo . When presented with a string, your echo service command will
simply return the presented string.

To do this youmust know that the JavaScript plugin provides the ability to register a service command
that, when executed, runs JavaScript contained in a file on disk. The C++ portion of the registered
service command is provided by the JavaScript plugin; so, you never need to worry about C++. You,
the user, need only provide the JavaScript file.

The JavaScript plugin requires the specification of a directory in which all such JavaScript files reside,
and any file with the extension .js in that directory will then be used to implement a service
command. So, all of your JavaScript files must reside in this directory. By default this directory
is javascript services/ relative to the server’s installation directory. So, all of your JavaScript
must reside within this directory.

2.1.3 Step 1: Creation of Meta-Data

Now, to start, create and open a file named echo.js in the javascript services/ directory. The
JavaScript contained in this filewill be executed in response to a request for your echo service command
and thus must echo its input as output.

Before you add any JavaScript to the file echo.js , youmust addmetadata, required by the JavaScript
plugin, to the file echo.js . This metadata is required so that the JavaScript plugin can specify your
service command’s interface to neuray Services and to other programmers.

This metadata takes the form of a formatted comment at the start of the file echo.js . This comment
must have the following format:

//# name = <name>

//# namespace = <namespace>

//# description = <description>

//# argument_descriptions = <argument_descriptions>

//# return_type = <return_type>

where <name> is the name of the service command, <namespace> its namespace, <description>
its human readable description, <argument descriptions> describes the names and types of its
input arguments, and <return type> its return type. Also, you can have more than one line with an
argument descriptions comment and the argument descriptions accumulate.

For example, your echo command, which has no namespace, takes a String as input, and returns a
String as output, has the following metadata

//# name = echo

//# description = "Echo command that echos a string input"

//# argument_descriptions = [{ "name": "input", "type" : "String" }]

//# return_type = String

Note: The value of argument descriptions indicates that the echo command has a single argument
named “input” that is of type String .

2 neuray Reference: JavaScript Plugin, doc. 1.2 c© 1986, 2011 NVIDIA Corporation.

2.2 Tutorials— Factorial

2.1.4 Step 2: Creation of JavaScript

Now, you can start writing the JavaScript that implements the echo command. Add the following line
to the end of the file echo.js :

input;

This simple line “returns” the value held in the variable input to the calling code. As the value held
in the variable input is the input String , this line echos the input as output.

In general, the last expression evaluated in the JavaScript file is the return value of the file. The return
value is not returned, as you might expect, by a normal return statement at the file’s end.

In summary, the entire contents of your file echo.js should be:

//# name = echo

//# description = "Echo command that echos a string input"

//# argument_descriptions = [{ "name": "input", "type" : "String" }]

//# return_type = String

input;

2.1.5 Step 3: Testing of JavaScript

To test your first JavaScript service command, you need to create a client that can communicate with
neuray Services through the appropriate protocol. The simplest way is to use the JavaScript client
library that ships with neuray Services. However, you can use any apropos client.

As the details of creating such a client are contained in the JavaScript client library documentation
[JavaScript Client API], we assume here that you have read said documentation, or documentation
describing some other means of creating a client, and can create such a client on your own. Thus, we
do not cover creating such a client here.

You are encouraged to play with this JavaScript service command. Try changing the name of the
command by editing the name comment in the echo.js file, setting it to ohce . Also change the
JavaScript in echo.js to the following:

//# name = ohce

//# description = "Ohce command that sohce a string input"

//# argument_descriptions = [{ "name": "input", "type" : "String" }]

//# return_type = String

var output = "";

for(var index = input.length;index > 0;--index)

output = output + input.charAt(index - 1);

output;

Use your client to access this new service. What happens?

c© 1986, 2011 NVIDIA Corporation. neuray Reference: JavaScript Plugin, doc. 1.2 3

2.2 Tutorials— Factorial

2.2 Factorial

2.2.1 What You Will Learn

In this tutorial you will learn how to:

• Call a service command from within a JavaScript based service command

2.2.2 Introduction

For your next JavaScript plugin you will create a simple JavaScript factorial service that computes
the factorial of a number passed to it1. When presented with a positive integer, your factorial
service will return the factorial of the passed positive integer. In creating this factorial service you
will learn how to call other services from within JavaScript.

2.2.3 Step 1: Creation of Meta-Data

To start, create and open a file named factorial.js in the javascript services/ directory. As
before, the JavaScript contained in this file will be executed in response to a request for your factorial
service and thus must compute the factorial of its input as its output. Also, as before, the first thing
you must specify in this JavaScript file is the metadata for the factorial service.

Your factorial service will be named factorial . It will take as input an integer named number that is
of type Uint64 , and it will return an integer of type Uint64 . Hence, factorial.js begins with the
metadata:

//# name = factorial

//# description = "Factorial command that returns the factorial of its input as output."

//# argument_descriptions = [{ "name": "number", "type" : "Uint64" }]

//# return_type = Uint64

2.2.4 Step 2: Creation of JavaScript Using JavaScript’s Rec ursion

Next, you will write the JavaScript that implements the factorial service.

One way of implementing the factorial service is to use JavaScript’s ability to recursively call itself.
Doing so you would add the following JavaScript after the metadata:

function factorial(val)

{

if(1 == val)

return 1;

return val * factorial(val - 1);

}

factorial(number);

1For those that need a refresher, the factorial of a positive integer n, written as n!, is by definition n∗(n−1)∗(n−2)∗· · ·2∗1.
So, the factorial of 1 is 1; the factorial of 2 is 2; and the factorial of 3 is 6.

4 neuray Reference: JavaScript Plugin, doc. 1.2 c© 1986, 2011 NVIDIA Corporation.

2.2 Tutorials— Factorial

Thus, the entire factorial.js file now should have the form:

//# name = factorial

//# description = "Factorial command that returns the factorial of its input as output."

//# argument_descriptions = [{ "name": "number", "type" : "Uint64" }]

//# return_type = Uint64

function factorial(val)

{

if(1 == val)

return 1;

return val * factorial(val - 1);

}

factorial(number);

2.2.5 Step 3: Testing of JavaScript

Now, to test your JavaScript service command, you need to create a client that can communicate with
neuray Services through the appropriate protocol. As before, we will assume that you can create such
a client on your own.

2.2.6 Step 4: Creation of JavaScript Using neuray Services R ecursion

Now your next step will be to implement this factorial service in a different manner, not using
JavaScript’s ability to recursively call itself, but using the ability of the JavaScript plugin to call other
service commands from within JavaScript. In particular, you will have the factorial service call
itself. But, before you do this, you need to examine how to call other service commands from within
JavaScript.

The JavaScript runtime contains a global instance named NRSCommandsthat has a set of member
functions each of which corresponds to a service command. So, for example, as there is a
commandnamed“import scene”, the JavaScript global instanceNRSCommandshas amember function
NRSCommands.import scene() . Similarly, as a result of your factorial command, the global instance
NRSCommandshas a member function NRSCommands.factorial() .

The signature of these NRSCommands member functions is derived from the signature of the
corresponding service command. If you examine the documentation for a given service command,
you find that it takes a set of named arguments with specified types. These arguments determine the
signature of the corresponding NRSCommandsmethod.

For example, your factorial command has a single argument named number of type Uint64 . Hence,
the corresponding method NRSCommands.factorial() takes as an argument a single JavaScript
Object with a member named “number”. Specifically, this JavaScript Object has a single member
named “number” that is an integer. So, to call the factorial commandwith an argument 10 fromwithin
JavaScript, you would write the following code:

var arg = new Object();

arg.number = 10;

NRS_Commands.factorial(arg);

c© 1986, 2011 NVIDIA Corporation. neuray Reference: JavaScript Plugin, doc. 1.2 5

2.2 Tutorials— Factorial

Equivalently, using JavaScript object literal syntax [Flanagan 02], you can call the factorial command
from within JavaScript with an argument 10 as follows:

NRS_Commands.factorial({number : 10});

Note: The arguments passed to themember functions ofNRSCommandsare passed by value in contrast
to the normal way JavaScript Object ’s are passed to JavaScript functions.

More generally, if there is a command named generic command that takes arguments named
argument1 , argument2 ..., then calling such a command from within JavaScript is done as follows:

var arg = new Object();

arg.argument1 = ...

arg.argument2 = ...

...

NRS_Commands.generic_command(arg);

where the assignments

arg.argument1 = ...

arg.argument2 = ...

...

assign argument1 , argument2 ... to values with types specified by the documentation of the service
command generic command.

The question then arises: How are instances of such types created in JavaScript? In most cases this is
straightforward. You create a JavaScript Object and add members named after the specified type’s
members then assign each member a value of the desired type. For example, a Color can be created
in JavaScript by creating a JavaScript Object and adding number valued members r , g, b, and a:

var color = new Object();

color.r = .01;

color.g = .20;

color.b = .40;

color.a = 1.0;

Other types can be dealt with in a similar manner. The only exception to this rule is the type Canvas
which can not be directly created in JavaScript.

A similar rule applies to the values returned from a given command. For example, if there is a
command named generic command documented as returning a Color , then calling the method
NRSCommands.generic command() would return a JavaScript Object with four number valued
members r , g, b, and a. Similarly, if it were documented as returning a Float64<2> , then calling
the method would return a JavaScript Object with two number valued members x and y . The only
exception to this rule is Canvas . A method documented as returning a Canvas returns an opaque
JavaScriptObject . This opaqueObject can, however, be passed to othermethods expecting aCanvas .

6 neuray Reference: JavaScript Plugin, doc. 1.2 c© 1986, 2011 NVIDIA Corporation.

2.3 Tutorials— Batching Service Commands

An error condition raised by a service command called in this manner is converted in to JavaScript
exception. In particular, an Error is thrown containing the error message produced by the
corresponding service command. In addition, any uncaught JavaScript exception in a script will
propagate up causing the service command the script defines to raise an error condition.

Your original implementation of factorial.js has the following form:

//# name = factorial

//# description = "Factorial command that returns the factorial of its input as output."

//# argument_descriptions = [{ "name": "number", "type" : "Uint64" }]

//# return_type = Uint64

function factorial(val)

{

if(1 == val)

return 1;

return val * factorial(val - 1);

}

factorial(number);

So, using the above comments on how to call a service command from within JavaScript, you can use
the global NRSCommandsinstance to implement the factorial function as follows:

//# name = factorial

//# description = "Factorial command that returns the factorial of its input as output."

//# argument_descriptions = [{ "name": "number", "type" : "Uint64" }]

//# return_type = Uint64

var result;

if(1 == number)

result = 1;

else

result = number * NRS_Commands.factorial({number : (number - 1)});

result;

With a little thought you can see that this is functionally the same code, but it makes use of the fact
that in JavaScript you can call other service commands.

To test this new implementation you can use the same client you created previously. You will obtain
the same results as before.

2.3 Batching Service Commands

2.3.1 What You Will Learn

In this tutorial you will learn how to:

• Batch calls of service commands from with a JavaScript based service command

c© 1986, 2011 NVIDIA Corporation. neuray Reference: JavaScript Plugin, doc. 1.2 7

2.3 Tutorials— Batching Service Commands

2.3.2 Introduction

For your next JavaScript plugin you will create a simple JavaScript service javascript batch that
executes several services together.

2.3.3 Step 1: Creation of Meta-Data

The JavaScript service javascript batch imports a scene in blocking mode, sets the camera’s aspect
ratio, and sets the camera’s resolution while returning no value. It takes as input the name of the scene
(a String), the name of the .mi file (a String), the camera name (a String), the image width (a Uint64),
and the image height (a Uint64).

Hence, if you store this command’s implementation in a file javascript batch.js and place it in
the normal location, then the metadata in javascript batch.js will be of the form:

//# name=javascript_batch

//# description=An example using Javascript to batch commands

//# argument_descriptions=[{"name":"sceneName","type":"String"},{"name":"fileName","type":"String"}]

//# argument_descriptions=[{"name":"cameraName","type":"String"}]

//# argument_descriptions=[{"name":"imageWidth","type":"Uint64"}]

//# argument_descriptions=[{"name":"imageHeight","type":"Uint64"}]

//# return_type=Void

Note, when there aremany argument descriptions comment lines, as above, the argument descriptions
accumulate.

2.3.4 Step 2: Creation of JavaScript

The JavaScript in javascript batch.js calls existing services to import the scene, set the
camera aspect ratio, and set the camera’s resolution. So, the JavaScript only needs to make
calls to the services NRSCommands.import scene() , NRSCommands.set camera aspect() , and
NRSCommands.set camera resolution() . When you look at the documentation for these services,
you find they can be called as follows:

NRS_Commands.import_scene({block:"true", scene_name:sceneName, filename:fileName});

NRS_Commands.set_camera_aspect({camera_name:cameraName,

aspect:(imageWidth/imageHeight)});

NRS_Commands.set_camera_resolution({camera_name:cameraName,

resolution:{ x:imageWidth, y:imageHeight}});

So, in summary, the file javascript batch.js has the following content:

//# name=javascript_batch

//# description=An example using Javascript to batch commands

//# argument_descriptions=[{"name":"sceneName","type":"String"},{"name":"fileName","type":"String"}]

//# argument_descriptions=[{"name":"cameraName","type":"String"}]

//# argument_descriptions=[{"name":"imageWidth","type":"Uint64"}]

//# argument_descriptions=[{"name":"imageHeight","type":"Uint64"}]

//# return_type=Void

8 neuray Reference: JavaScript Plugin, doc. 1.2 c© 1986, 2011 NVIDIA Corporation.

3 Configuration

NRS_Commands.import_scene({block:"true", scene_name:sceneName, filename:fileName});

NRS_Commands.set_camera_aspect({camera_name:cameraName,

aspect:(imageWidth/imageHeight)});

NRS_Commands.set_camera_resolution({camera_name:cameraName,

resolution:{ x:imageWidth, y:imageHeight}});

2.3.5 Step 3: Testing of JavaScript

Now you only need a client to call this service. As usual, we assume that you can write such a client
on your own.

3 Configuration
Generically, when you start neuray Services you specify a configuration file that is used to configure
neuray Services. This configuration file is specified through the value of the command line flag -
-config file . The default installation of neuray Services sets the value of this flag to be the file
realityserver.conf in the root directory of the neuray Services.

The configuration file, be it the default realityserver.conf or any another specified configuration
file, is used to configure the JavaScript plugin. The configuration of the JavaScript plugin consists, in
total, of setting the value of a single key, directory , in the configuration file.

The key directory in the configuration file should be set to have a value which is the relative path of
the directory containing the JavaScript files that implement the service commands. This path should
be relative to the neuray Services root directory.

For example, if the JavaScript files that implement the service commands are in the directory
javascript , relative to the neuray Services root directory, then the key/value pair in the configuration
file will have the form:

directory javascript

However, to indicate that this key/value pair is to be used by the JavaScript plugin, and not some
other plugin, you have to enclose this key/value pair with a <user>...</user> tag as follows:

<user javascript>

directory javascript

</user>

Note, the specified directory must exist; the JavaScript plugin will not create it for you.

In addition, you can specify that neuray Services look in more than one directory for the JavaScript
files that implement the service commands. This is done by repeating the key “directory” in the
configuration file with a different value each time.

For example, if the JavaScript files that implement the service commands are in the directories
javascript1 , javascript2 ,... ,javascriptN , all relative to the neuray Services root directory,
then the key/value pairs in the configuration file will have the form:

c© 1986, 2011 NVIDIA Corporation. neuray Reference: JavaScript Plugin, doc. 1.2 9

4.1 API— Meta-Data

<user javascript>

directory javascript1

directory javascript2

...

directory javascriptN

</user>

Again, the specified directories must exist.

4 API

4.1 Meta-Data

The metadata for a JavaScript service command is defined by a set of comments that begin the
JavaScript file in which a JavaScript service command is defined. Generically, such comments are of
the form:

//# name = <name>

//# namespace = <namespace>

//# description = <description>

//# argument_descriptions = <argument_descriptions>

//# return_type = <return_type>

where you can have more than one line with an argument descriptions comment and the
argument descriptions accumulate. Also, note that the namespace , description , and argu-
ment descriptions comments are optional. While name and return type are required. If ab
sent, namespace defaults to an empty string, description defaults to an empty string, and argu-
ment descriptions defaults to no arguments. Also, note that if there are two service commands
with the same name and namespace, the last service command registered is the active command and
the other is discarded.

The EBNF grammar, where {...} indicates the enclosed expression is repeated 0 or more times, for the
various pieces above is as follows:

<name> : <identifier>

<namespace> : <identifier>

<description> : <string_literal>

<argument_descriptions> : <json_array_of_argument_descriptions>

<return_type> : <typename>

where <identifier> is an alphabetic character followed by a possibly empty sequence of alphabetic
characters, decimal digits, and underscores that is neither a typename nor a JavaScript reserved word;
<string literal> is a possibly empty sequence of characters not including a double quote or escape
sequences, enclosed in double quotes.

<json array of argument descriptions> is a JSON formatted array of objects which describe the
command arguments. Each object supports the following keys:

10 neuray Reference: JavaScript Plugin, doc. 1.2 c© 1986, 2011 NVIDIA Corporation.

4.2 API— JavaScript API

name : JSON string containing the argument name.

type : JSON string containing the argument typename.

description : JSON string containing the argument description.

default : the arguments default value, the type of this depends on the arguments type

and may also be null.

name and type are required but all others are optional. <type> names a type in the neuray Services.
(See the Types documentation [neuray API] to find the supported type names.)

4.2 JavaScript API

The JavaScript API presented by the JavaScript plugin is lean and focused. First, it presents the
pure JavaScript API presented by version 1.8.0 of JavaScript as implemented in Spidermonkey
version “JavaScriptC 1.8.0 prerelease 1 20090216”. Second, it presents a global instance named
NRSCommandsthat has a member function for every installed service command.

Generically, if there is a service command named generic command that takes arguments named
argument1 , argument2 ... of types typename1 , typename2 ... respectively, then NRSCommandswill
have a member function named generic command that will take a single argument, a JavaScript
Object . This JavaScript Object must have members named argument1 , argument2 ... that are of
types typename1 , typename2 ... respectively. Calling such a command from within JavaScript is done
as follows:

var arg = new Object();

arg.argument1 = ...

arg.argument2 = ...

...

NRS_Commands.generic_command(arg);

where the assignments

arg.argument1 = ...

arg.argument2 = ...

...

assign argument1 to a value of type typename1 , argument2 to a value of type typename2 ...

To create a JavaScript value of a specified type create a JavaScript Object and add members named
after the specified type’s members then assign each member a value of the desired type. The only
exception to this rule is the type Canvas which can not be directly created in JavaScript.

A similar rule applies to return values. For example, a command documented as returning a Color ,
returns a JavaScript Object with four number valued members r , g, b, and a. The only exception
to this rule is Canvas . A method documented as returning a Canvas returns an opaque JavaScript
Object that can be passed to other methods expecting a Canvas .

An error condition raised by a service command called in this manner is converted to a JavaScript
exception. In particular, an Error is thrown containing the error message produced by the
corresponding service command. In addition, any uncaught JavaScript exception in a script will

c© 1986, 2011 NVIDIA Corporation. neuray Reference: JavaScript Plugin, doc. 1.2 11

6 Release Notes

propagate up causing the service command the script defines to raise an error condition. The specific
error message will be returned to the user as the data parameter of the error.

5 Runtime
The neuray Services server is robust and flexible with respect to changes in the JavaScript and meta
data defining a service command.

You can, at any time, change the JavaScript code defining a service command. Any subsequent
execution of the service command will use the new JavaScript code without requiring a server restart.

In addition, you can, at any time, change any and all metadata in a file defining a service command.
Upondoing so, the old service command, corresponding to the oldmetadata,will be unregistered and
the new service command, corresponding to the new metadata, will be registered. Any subsequent
call to the new service commandwill work as expected while any call to the old service commandwill
fail. Again, this requires no server restart.

6 Release Notes
This is version 1.0 of the JavaScript plugin and there are no known issues.

12 neuray Reference: JavaScript Plugin, doc. 1.2 c© 1986, 2011 NVIDIA Corporation.

Bibliography

[Flanagan 02] D. Flanagan, JavaScript, The Definitive Guide, 4th edn. O’Reilly, 2002.

[neuray API] mental images GmbH, Berlin, Germany, neuray API.

[neuray Services API] mental images GmbH, Berlin, Germany, neuray Services API.

[JavaScript Client API] mental images GmbH, Berlin, Germany, JavaScript Client API.

13

